
Here we describe the results of a quantitative proteomics study
that defines the protein composition of the quasi-enveloped
eHAV virion and points to an endosomal, MVB-like origin for
these unusual infectious particles.

Results
We adopted a quantitative proteomics approach incorporating
metabolic amino acid-coded mass tagging with stable isotopes
(AACT; also known as SILAC) (7, 8) to unambiguously distin-
guish eHAV-associated proteins from proteins present in exo-
somes similar in size and density to eHAV virions. Supernatant
fluids from infected Huh-7.5 human hepatoma cell cultures main-
tained in [13C6]Lys/[13C6]Arg ( “heavy”; H) or [ 12C6]Lys/[12C6]Arg
(“ light” ; L) media were subjected to low-speed centrifugation at
10,000× g to remove large extracellular vesicles (9). eHAV virions
remaining in the medium were concentrated by ultracentrifugation
at 100,000× g and then purified by isopycnic equilibrium ultra-
centrifugation in preformed iodixanol gradients (seeSI Materials
and Methodsfor details). Fractions containing virus were identified
by HAV-specific RT-PCR (Fig. 1A) and mixed with fractions of
similar density from a gradient loaded in parallel with con-
centrated supernatant fluids from noninfected cells maintained

in the opposing medium. The samples were then subjected to
proteolytic digestion, and peptide fragments were identified by
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
and quantified by AACT (SI Materials and Methods). Two in-
dependent, reverse AACT labeling experiments were carried out,
each with H and L labeling of virus (thus we studied a total of four
independent virus samples). In the second experiment, virus and
mock-infected supernatant fluid concentrates were mixed be-
fore, rather than following, isopycnic ultracentrifugation.

A total of 638 proteins were identified by the presence of at least
one unique peptide in at least one of the four samples when
screened against the human UniProt database and HAV polyprotein
sequence. Of these, 294 were present in both H and L virus samples.
Multiple peptides were derived from the four structural proteins
of HAV ( Fig. S1). One peptide spanned the VP4–VP2 cleavage
(QGIFQTVGSGLDHILSLA D̂IEEEQMIQSVDR), suggesting
that some empty capsids may have been present in the eHAV
preparations. Another peptide spanned the VP1pX cleavage
site (APLNSNAMLSTEŜMMSR) (10), consistent with the
lack of VP1pX processing noted previously in eHAV (2).
Overall, 53.7% of the sequence of the structural HAV proteins
was represented by peptides, whereas no peptides were iden-
tified from nonstructural proteins that comprise a larger pro-
portion of the viral polyprotein (Fig. S1). This indicates that the
packaging of HAV capsids within the membranes of eHAV
vesicles is highly selective, and excludes virally encoded com-
ponents of the replication complex.

Reflecting robust metabolic labeling, peptides derived from HAV
structural proteins were enriched in the H (13C) or L ( 12C) isotope
of their culture medium of origin by 8.4- to 47-fold in the four
samples (mean 26.9-fold± 7.9 SEM) (Fig. 1B). However, when all
peptides were ranked according to the intensity of H versus L iso-
tope, significant skewing was evident, with a predominance of
peptides enriched for L isotope in all four samples (Fig. 1B and
Table S1): Overall, 42.3% of the peptides were enriched>12-fold
for L isotope, versus only 4.6% of peptides for H isotope (P =
0.029 by two-sided Mann–Whitney test). This likely reflects the
presence of bovine peptides derived from FCS added to media to
maintain cell-culture integrity, as these were not subject to meta-
bolic labeling and thus would be L-enriched. Consistent with this,
peptides representing 53% of the identified protein groups shared
sequence in common with bovine peptides, rendering their species
of origin indeterminate. A total of 292 unique bovine proteins were
also identified. These had significantly lower automated H/L ratios
than peptides with unique human sequence (P < 0.0001 by
ANOVA) or peptides of indeterminate origin ( P = 0.0003) (Fig.
S2). However, there was no difference between the H/L ratios of
peptides of indeterminate versus definitive human origin (P =
0.543), suggesting that most“ indeterminate” proteins were actually
of human (Huh-7.5 cell) origin.

Peptides representing 105 host proteins (either definitively hu-
man or of indeterminate origin) were classified as� 2-fold–enriched
for the cognate eHAV isotope based on automated AACT quan-
titation of peptides from at least two of the four virus samples (Fig.
S3and Table S1). Peptides from 26 proteins were� 2-fold–enriched
in at least three samples (Fig. 2). The cellular components with
which these proteins associate are similar for both sets of proteins
(Fig. 3). Over 90% of the proteinsin either set have been identified
previously in exosomes, and 13 of the 26 proteins identified in at least
three virus samples rank among the top 120 exosome-associated
proteins in the Vesiclepedia database (www.microvesicles.org) (11).
Both sets of proteins were highly enriched for lysosome-associated
proteins (P < 0.001), with LAMP1, a classic lysosomal mem-
brane marker, >2-fold–enriched in all four virus samples (geo-
metric mean 8.2-fold).

We focused further on the 26 proteins that were classified
as � 2-fold–enriched in at least three samples (Fig. 2). Whereas
11 were of indeterminate origin, peptide sequences of the

Fig. 1. Stable isotope labeling of eHAV. ( A) Distribution of HAV RNA (log 10

scale) in fractions collected from iodixanol gradients loaded with eHAV
concentrated from supernatant fluids of infected Huh-7 cell cultures main-
tained in media containing H [ 13C] (Left ) or L [12C] (Right ) amino acids in
experiment 1 and centrifuged to equilibrium. The red brackets indicate
fractions that were pooled with fractions of similar density from gradients
loaded with supernatant fluids from noninfected cells maintained in the
opposing media and subjected to mass spectrometry. � , HAV RNA; GEs
(genome equivalents) per 20 � L; � , density (g/cm 3). (B) Distribution of iso-
topic enrichment in peptides identified in a search against the human Uni-
Prot database in the four independently 13C-labeled (Left ) and 12C-labeled
(Right ) eHAV samples submitted for mass spectrometry in experiments 1
(Top) and 2 (Bottom ). In experiment 1, infected and uninfected cell-culture
harvests were mixed following density gradient fractionation, whereas these
samples were mixed before fractionation in experiment 2. The fold enrich-
ment of HAV-encoded peptides is noted in each panel.
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remaining 15 were uniquely human. Sequence coverage varied
from a low of 11.3% (NDFIP2; NEDD4 family-interacting pro-
tein 2) to a high of 80.1% (PRDX1; peroxiredoxin 1) (mean
39.7 ± 20.2 SD) (Fig. 2). Five of the 26 proteins are functionally
associated with ESCRT-III, including ALIX (also known as
PDCD6IP), shown previously to be essential for eHAV bio-
genesis (2), CHMP1A, CHMP1B, CHMP4B, and IST1, whereas
SDCBP (syntenin) plays a key role in syndecan-ALIX–mediated
exosome biogenesis (12). Two other proteins, RAB5C and
RAB7A, are Rab GTPases that function in endosomal traffick-
ing. Manual inspection of spectra for selected proteins (LAMP1,
CHMP1A, CHMP4B, RAB5C, RAB7A, and SDCBP) confirmed
quantifiable amounts of peptides and high H/L ratios. This
array of proteins and their strong endolysosomal association
suggest that eHAV egress involves an MVB-like, endosomal
export pathway. Importantly, no peptides derived from the
autophagosome membrane marker LC3 were identified in any
of the purified virus samples.

Several proteins shown in Fig. 2, including CD9, its binding
partner IGSF8 (Ig superfamily member 8), DPP4 (dipeptidyl
peptidase 4, CD26), and EPCAM (epithelial cell-adhesion
molecule), are expressed on the exterior surface of cell mem-
branes and are thus of interest as proteins potentially displayed
on the surface of eHAV vesicles. Manual inspection of the
spectra confirmed specific isotopic enrichment of DPP4, CD9,
and EPCAM peptides. Interestingly, DPP4 localizes to the apical
membrane of polarized hepatic cells (13, 14), whereas our recent
work shows that eHAV is secreted across the apical, canalicular
membrane of infected hepatocytes into the biliary tract of in-
fected Ifnar1Š/Š or MavsŠ/Š mice (14). Apical membrane loca-
tions have also been inferred for CD9 and EPCAM in some cell
types (15, 16). Proteins expressed exclusively on the apical
membrane would not be expected a priori in eHAV vesicles with
an endosomal origin. However, DPP4, CD9, and EPCAM have
each been identified in exosomes from a variety of cell types (17–

19) (Vesiclepedia database), likely reflecting ambiguity in their
membrane associations. Indeed, despite its use as a marker of
apical membrane polarity, DPP4 is a well-established lysosomal
membrane component (20).

We adopted an immunoaffinity approach to physically confirm
the association of selected host proteins with eHAV vesicles,
quantifying HAV RNA by RT-PCR in virus immunoprecipitated
with specific antibodies from gradient fractions containing
eHAV. Prior treatment of the eHAV fraction with the detergent
Nonidet P-40 resulted in a large (� 100-fold) increase in HAV
RNA precipitated by an anti-capsid monoclonal antibody
(K24F2), consistent with the capsid being occluded by mem-
branes disrupted by the detergent (2) (Fig. 4A). Large amounts
of virus were also precipitated by antibody to ALIX and DPP4,
confirming their association with eHAV. Prior detergent treat-
ment resulted in significant increases in the amount of virus
precipitated with anti-ALIX, consistent with previous work
suggesting that ALIX interacts with the capsid via two tandem
YPX3L “late domains” in the VP2 capsid protein (2). In contrast,
Nonidet P-40 treatment resulted in marked reductions in the
amount of viral RNA precipitated by antibody to DPP4, in-
dicating that DPP4 is primarily membrane-associated (Fig. 4A).
In addition to its dipeptidyl exopeptidase activity, DPP4 has
substantial receptor-binding activities, as it interacts with insulin-
like growth factor II receptor (IGFIIR) as well as the chemokine
receptor CXCR4 (21). Antibody to DPP4 failed to neutralize
the infectivity of eHAV virions (Fig. S4), suggesting that this
receptor-binding activity is not essential for eHAV entry. Similar
negative neutralization results were obtained with antibodies to
the tetraspanins CD9, CD63, and CD81 (Fig. S4). Further
studies will thus be needed to ascertain how infectious eHAV
virions attach to and gain entry into cells.

Next, we determined the ability of an expanded panel of anti-
bodies to precipitate eHAV in the absence of detergent treatment,
scoring precipitates relative to the amount of viral RNA pulled
down by anti-capsid antibody (K24F2) in the presence of detergent
(Fig. 4B). Consistently, anti-DPP4 pulled down as much HAV RNA
in the absence of detergent as K24F2 did following detergent treat-
ment. Antibodies to CD9, NDFIP2, and histone H4 (HIST1H4A)
also precipitated substantial quantities of eHAV, consistent with
the exposure of these proteins on the eHAV surface. Lesser
amounts of virus (<1%) were precipitated by antibody to LAMP1,
or the common exosome components CD63 (isotopically enriched
in two virus samples; Table S2) or CD81 (which was present in two
of four virus samples but not isotopically enriched) (17). In addition
to anti-ALIX, antibodies to several other ESCRT-III–associated
proteins not identified in the proteomics screen (CHMP4A,
CHMP7, and VPS4B) precipitated large amounts of eHAV

Fig. 2. Sequence coverage and geometric mean fold isotope enrichment of
HAV and 26 nonviral proteins with � 2-fold isotope enrichment ( o) in at least
three of four independently labeled eHAV samples submitted for mass
spectrometry. *Peptides of indeterminate human versus bovine origin (main
text). †ALIX: PDCD6IP.

Fig. 3. Cellular components mapped by FunRich (39) to proteins with � 2-
fold isotope enrichment in either � 2 or � 3 of 4 independently labeled eHAV
samples. *ŠLog10(P value) for enrichment versus UniProt database.
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gradients. Over 90% of the proteins that we found to be associated
with eHAV have been reported previously in exosomes (Fig. 3) (11).
Moreover, eHAV-associated proteins were highly enriched for those
that normally localize to the endolysosomal system of cells (Fig. 3).
This includes DPP4, which, although an integral apical trans-
membrane protein, is also associated with lysosomes (20). No array
of proteins has been shown to be completely specific for exosomes
versus other types of extracellular vesicles formed by outward bud-
ding at the plasma membrane rather than inward budding into
MVBs (17). Moreover, the protein composition of exosomes may
vary with the type of cell from which they are produced. However,
the presence of the tetraspanin CD9 and the strong enrichment of
endolysosomal proteins in eHAV vesicles are strongly suggestive of
an endosomal exosome-like origin for eHAV (9). We also found
eHAV to be enriched for RAB5C and RAB7A (Fig. 2), and iso-
forms of both of these RAB GTPases are known to play prominent
roles in endosomal trafficking and exosome biogenesis (12, 26).

Several other conclusions can be drawn from the proteomics
data. First, the packaging of HAV capsids into membranous
vesicles is not random but instead results from a highly selective
and specific sorting process. Despite high peptide coverage for
each of the four structural proteins present in the HAV capsid
(53.7% overall; Fig. S1), no peptides were identified from the
larger, nonstructural segment of the viral polyprotein in any of
the four virus samples studied by mass spectrometry. This indi-
cates that nonstructural HAV proteins are not copackaged with
capsids in eHAV vesicles, although they are likely present at high
local abundance within the cellular compartment(s) in which the

viral RNA replicates and the capsid assembles. ALIX–VP2
capsid protein interactions likely play a major role in this sorting
process, although other, yet-to-be-determined sorting mecha-
nisms may well be operative (2, 3).

The quantitative proteomics data also point to the engagement of
multiple ESCRT-III–associated proteins in eHAV egress. ALIX,
CHMP1A, CHMP1B, CHMP4B, and IST1 were all >2-fold–

enriched in three of the four virus samples studied by mass spec-
trometry (Fig. 2), whereas the presence of CHMP4A, CHMP7, and
VPS4B was indicated by immunoprecipitation of gradient-purified
eHAV with specific antibodies (Fig. 4A). The close association of
these ESCRT-III–associated proteins with eHAV is consistent with
prior studies showing that RNAi-mediated knockdown of either
ALIX or VPS4B effectively ablates eHAV release from cells (2).
Similar knockdown experiments confirm functional roles for addi-
tional ESCRT-III–associated proteins identified in the proteomics
screen, including in particular CHMP2A (Fig. 5).

Whereas ESCRT-I and ESCRT-II proteins are important for
exosome biogenesis (17, 27), none were associated with eHAV.
TSG101, an ESCRT-I–associated protein that is typically present
in exosomes derived from MVBs (9), was not isotopically
enriched in any of the four eHAV samples subjected to mass
spectrometry. Previous RNAi studies also suggest that neither
TSG101 nor the ESCRT-0–associated protein HRS is essential
for eHAV release (2). Thus, whereas ESCRT-III proteins are
required for membrane scission in eHAV biogenesis, there is as
yet no evidence that other ESCRTs play a role in eHAV cargo
selection. This contrasts with current paradigms for MVB for-
mation and exosome biogenesis (17, 25). HAV may thus usurp
only part of, and not the entire, exosome biogenesis pathway to
gain egress from infected cells.

Poliovirus and other enteroviruses appear to egress nonlyti-
cally from infected cells in autophagosome-derived vesicles
containing LC3-II (4, 5, 28). These enteroviral vesicles are much
larger than eHAV, and contain a much greater number of viral
capsids than eHAV vesicles (2, 6). Their size resembles extra-
cellular vesicles and autophagous blebs shed from the plasma
membrane, and is distinct from MVB-derived exosomes that are
generally much smaller (<150 nm) and similar to eHAV (2, 17).
Nonetheless, it is not possible to fully exclude a role for
autophagy-mediated secretion (29, 30) in the biogenesis of quasi-
enveloped eHAV vesicles. Purified eHAV preparations con-
tained no detectable peptides derived from LC3, which in its
lipidated LC3-II form is associated with autophagosome mem-
branes. However, LC3 appears to be difficult to detect by mass
spectrometry in autophagosome-derived extracellular vesicles
(31, 32). Nonetheless, eHAV vesicles were not precipitated by
anti-LC3 antibody (Fig. 4B), and we have shown previously that
RNAi-mediated depletion of beclin 1 has no effect on eHAV
release (2). Autophagy-related release of poliovirus is inhibited
by beclin-1 knockdown (6) but not by spautin 1, an autophagy
inhibitor that blocks deubiquitinases targeting beclin 1 (33, 34).
Further studies are needed to determine the extent to which
eHAV biogenesis may involve beclin 1-independent aspects of
secretory autophagy.

Hepatitis E virus, which is phylogenetically distinct from the
picornaviruses and classified within its own family, the Hepevir-
idae, and Bluetongue virus, a member of the Orbivirus genus in
the Reoviridae family, are nonenveloped viruses that also gain
egress from cells via nonlytic processes dependent upon ESCRT-
associated proteins (reviewed in ref. 3). Unlike HAV, these
viruses are dependent upon TSG101 for their egress. We antic-
ipate that additional nonenveloped viruses will be shown to be
released nonlytically in extracellular vesicles, and that the re-
sponsible mechanisms may prove to be as heterogeneous and
varied as the different types of extracellular vesicles released
from eukaryotic cells (17).

Fig. 5. RNAi analysis of potential DPP4-, RAB7A-, and ESCRT-III–associated
host protein function in eHAV biogenesis. ( A) RT-PCR detection of virus re-
leased into supernatant fluids of persistently infected cell cultures between
72 and 96 h after transfection with host mRNA-specific or control, non-
targeting siRNA pools. Results represent the percentage HAV RNA relative to
that in supernatants from cultures transfected with nontargeting siRNA, and
are shown as mean ± range from two independent experiments. * P < 0.05,
** P < 0.01, *** P < 0.001 by two-way ANOVA with Holm –Sidak’s test for
multiple comparisons. ( B) eHAV present in fractions of iodixanol gradients
loaded with 96-h supernatants from cell cultures transfected with the in-
dicated host mRNA-specific siRNAs. Nontargeting siRNA control results are
shown as bars. Also shown are the density traces (dashed lines) from each
gradient. eHAV was quantified by computing the area under the curve
(AUC) for peaks in the RNA profiles.
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Materials and Methods
Cells and Plasmids. Huh-7.5 human hepatoma cells (35) and FRhK-4 fetal rhesus
kidney cells (36) were cultured in DMEM supplemented with 10% FBS, except as
otherwise noted. HM175/p16 virus, a low -passage, noncytopathic, cell culture-
adapted variant of the HM175 strain of HAV , has been described previously (37,
38). An infectious molecular clone of its genome, pHM175p16.2 (GenBank ac-
cession no. KP879217.1),was assembled, under control o f the T7 promoter, from
PCR-amplified cDNA fragmen ts using standard methods.

Human Serum Samples. Human serum samples were collected from individuals
involved in a nationwide outbreak of hepatitis A in Korea with the approval
of the institutional review board of Seoul National University Bundang
Hospital (2). Deidentified serum samples were graciously provided by Sook-
Hyang Jeong. The UNC Office of Human Research Ethics determined this
research did not require Institutional Review Board approval.

Quantitative AACT Proteomics Analysis of Quasi-enveloped eHAV Virions. RNA
transcripts were prepared from pHM175p16.2 DNA and transfected into Huh-
7.5 cells by electroporation as previously described (2). After culturing for 2 wk in
DMEM with 10% FBS, the cells were passaged five times (1:10 split) in media
containing [ 13C6]Lys/[13C6]Arg (H media) or [ 12C6]Lys/[12C6]Arg (L media) (Thermo
Fisher) in parallel with nontransfected cells. Approximately 5 × 106 cells were
subcultured in 850-cm 2 roller bottles (Corning) with media supplemented with
25 mM Hepes and exosome-depleted FBS (Thermo Fisher). Roller bottles were
placed on an Argos FlexiRoll set at 0.01 rpm in a 35.5 °C incubator with no CO 2.
After 5 d, the virus-containing media we re removed for storage at 4 °C, the cells
were refed, and the roller bottles were cultured for an additional 5 d. Following
a second and final collection, media from transfected (infected) and non-
transfected (noninfected) cells were clari fied by centrifugation twice at 10,000 ×
g for 30 min, thereby removing large e xtracellular vesicles. eHAV virions
remaining in the media were then conce ntrated by centrifugation at 100,000 × g

in a Sorvall Ultra 80 ultracentrifuge with a SureSpin 630 rotor (Thermo Scientific)
and 36-mL Ultra-Clear tubes (Beckman Coulter). Pellets were resuspended in
100 � L of PBS, layered on top of a preformed preparative iodixanol gradient, and
centrifuged to equilibrium as previously de scribed (2). Fractions containing virus
were identified by extraction of RNA foll owed by HAV-specific RT-PCR (2), mixed
with fractions of equivalent density from a similar gradient loaded with con-
centrated supernatant fluids from noni nfected cells maintained in the oppos-
ing H or L medium, and subjected to either in-gel or in-solution tryptic digestion
followed by LC-MS/MS for peptide sequencing and protein identification. Mass
spectra were processed and peptides were identified using the Andromeda search
engine and MaxQuant software version 1.5.3.2 (Max Planck Institute) against
UniProt human and bovine sequence datab ases and the UniProt HM175/p16 virus
polyprotein sequence (A0A0F7Q1W1). The enrichment of proteins with H ( 13C)
or L (12C) isotope was estimated from the H/L ratio of peptides, which was
derived from a comparison of the extracted ion chromatogram peak areas of
all quantifiable matched light ([ 12C]-enriched) versus heavy ([13C]-enriched)
peptides (7, 8). The cellular components and biological pathways with which
these proteins are associated were assessed using open-source FunRich
2.1.2 functional enrichment software and the UniProt and Vesiclepedia data-
bases (11, 39). Complete details are provided in SI Materials and Methods.

Statistics. Statistical significance was assessed by ANOVA or unpaired t tests as
described in Results. Calculations were carried out with Prism 6 for Mac OS X
software, version 6.0h (GraphPad). A P value <0.05 was considered significant.
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